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Abstract 
X-ray dynamical diffraction in homogeneously bent 
crystals is studied theoretically in the Bragg case. The 
study starts from the Green function given previously 
by Chukhovskii, Gabrielyan & Petrashen' [Acta Cryst. 
(1978), A34,610-620] as an inverse Laplace transform 
and which can be viewed as an integral over all 
incident plane waves. The integrand is developed by 
means of an asymptotic representation of parabolic 
cylinder functions. Integration by the stationary- 
phase method leads to the evidence of curved X-ray 
paths and, in the case of large values of strain 
gradient, to the creation of a new wave field. The 
intensity of the new wave field is shown to be a 
fraction exp (-2rr[ ~,1) of the incident beam where lu[ 
is the inverse of the strain gradient expressed in 
reduced units. 

I. Introduction 
The propagation of X-rays in distorted crystals has 
been widely studied since 1961 when Penning & Pol- 
der first published their geometrical-optics theory of 
propagation of wave fields. Their theory was based 
on an analogy with the propagation of light in 
inhomogeneous media. Then Kato (1963, 1964) 
developed a more rigorous theory using the Eikonal 
formulation and leading to the same results. Penning 
& Polder and Kato considered crystals distorted by 
a uniform strain gradient in the transmission or Laue 
case. Let us mention here that all theoretical works 
in this field have considered uniform strain gradients, 
that is distortions such that the second derivative of 
the projection of the displacement vector u(r) on the 
diffraction vector h with respect to the incident so and 
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reflected Sh directions is constant [a2(h.u)/aSo 0 S  h -~- 

constant]. Then Bonse (1964) generalized Penning & 
Polder's theory in order to apply it to the reflection 
or Bragg case and obtained hyperbolic trajectories 
for incident waves outside the domain of total 
reflection. 

The three theories mentioned above are 
geometrical-optics theories and can only be valid for 
small strain gradients. Another approach to the study 
of X-ray propagation in distorted crystals was 
developed later, on the basis of the Green-Riemann- 
function method which takes into account diffraction 
phenomena and thus can be applied to large strain 
gradients. The Laue case was first treated by 
Petrashen' (1973), Chukhovskii (1974), Katagawa & 
Kato (1974), Petrashen' & Chukhovskii (1975, 1976), 
Chukhovskii & Petrashen' (1977). The Green function 
they obtained is a hypergeometric function which by 
itself does not provide any physical insight. Using 
asymptotic expansions, the authors were able to 
retrieve the results of geometrical theories in the case 
of small strain gradients and kinematical theory for 
extremely large strain gradients. Then Balibar, Chuk- 
hovskii & Malgrange (1983) expressed the hyper- 
geometric function as an inverse Laplace transform 
from which they were able to evidence the creation 
of a new wave field at the apex of the hyperbolic ray 
path for strong strain gradients. Its intensity was 
shown to be a fraction exp (-27r/]ao]) (where ao is 
proportional to the strain gradient) of the intensity 
of the wave field before the apex of the trajectory. 
These results gave a theoretical basis to the computed 
results obtained previously by Balibar, Epelboin & 
Malgrange (1975). 

The Bragg case was studied somewhat later. 
Petrashen' (1973) obtained the Riemann function as 
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an infinite series of confluent hypergeometric func- 
tions where unfortunately all the terms are of the 
same order. Then, Chukhovskii, Gabrielyan & 
Petrashen' (1978) obtained the Green function in the 
form of an inverse Laplace transform. They gave some 
characteristics of the wave fields in the case of small 
strain gradients but did not say anything about large 
values of the strain gradient. Computer integration 
of Takagi-Taupin equations was then performed by 
Gronkowski & Malgrange (1984). They obtained not 
only the hyperbolic trajectories of geometrical optics 
but also the creation of a new wave field in the case 
of large strain gradients and the value of its intensity, 
in good agreement with the value given by Balibar, 
Chukhovskii & Malgrange (1983) in the Laue case. 

The aim of this paper is to give a theoretical basis 
to these computer results and more generally to 
describe X-ray wave field propagation in homo- 
geneously bent crystals in the Bragg case. 

2. The Green function as an integral over incident plane 
waves 

The Green function describing the diffracted wave in 
a crystal distorted by a uniform strain gradient has 
been given in the Bragg case by Chukhovskii, 
Gabrielyan & Petrashen' (1978) and expressed as an 
inverse Laplace transform which can be written 

Gh(So, Sh) = exp [ -  ~(So, Sh, B)](i/4B)l/2(1/2iTr) 

P,o~ i°° 
x exp [p(So+Sh)/2] 

p o - -  i oo 

x [ D _ l _ , , ( Y ) / D _ , , ( Y o ) ] d p  (1) 

where So and Sh are reduced coordinates in the direc- 
tion of the incident and reflected wave vectors Ko and 
Kh respectively: 

So = ~ryo[So]/A, Sh = ~IY~I[s~]IA,  

where [So] and [Sh] are normal coordinates along 
Ko and Kh. Ar is the real part of the usual extinc- 
tion distance A =A(3'013'hl)l/2/[f(Xh,W)~/2], 3,0 = 
COS (So, n), 3,h = COS (Sh, n) (Fig. 1), Xh, Xa are the h 
and/~ Fourier coefficients of the electronic suscepti- 
bility, and 4B = a:/aSoaSh (2~ h.u) and is related to 

~o 

[so] 

Z 

Fig. 1. Coordinate system. 

the usual/3 parameter through the relation 

4 B = 2 A o /3 / Tr = /3 / /3 c , (2) 
where /3c = 7r/(2A0) is the critical value introduced 
by Authier & Balibar (1970), Ao being the extinction 
distance in the symetric Laue case. Ao is an intrinsic 
length for a given crystal and a given reflection since 
it is the inverse of the distance between the two apices 
of the dispersion hyperbola. 

Of the remaining symbols in (1), 

v =  i(1 + 2 ik ) /4B  (3) 

where 2k is the ratio (assumed to be small) between 
the imaginary and the real part of XhXh, 

Yo= p v  1/2, (4) 

Y =  [p - 4 i B (  So- Sh)]V 1/2, (4') 

D~ is the parabolic cylinder function of order v, and 

CP( so, Sh, B) = B( s 2 -  S2h) + 2BSoSh. 

Let us note that the notations used here are those 
used by Balibar, Chukhovskii & Malgrange (1983) 
since, in the symmetrical Laue case, Ar and Ao are 
equal and in their paper A = Ar = Ao. In order to 
simplify, let us assume the absorption to be zero, so 
that A is real and v is purely imaginary. Let us write 

p = -2ir/o (5) 

where % is the usual r/ parameter related to the 
departure from Bragg angle AOo by the relation 

A0o sin 2 0 B - - ½ [ (  3"h/ 3"O ) -- 1]Xo 
'7°= c(13',,I/3"o)'12(XhXa) '12 (6) 

where 0t~ is the Bragg angle. 
If z is the coordinate normal to the entrance surface 

(Fig. 1) and directed towards the inside of the crystal, 

z = n . r =  (So-- Sh)Ar/ Tr. (7) 

Then, from (5) and (7), 

p - 4 i B ( s o -  Sh) = --2i( r/o + 2 B ~ z / A , )  

= - 2 i [ n o +  (/3z cos O)l(3"o13"hl)'lq. 

(8) 
Integration of the basic equation of geometrical- 
optics theory given by Kato (1963, 1964) and Penning 
& Polder (1961) gives for the local value of the 7/ 
parameter 

= no+ (/3z cos 0) / ( ro l rh l )  '/2. 
Then 

p--4iB(so--sh)  = --2i~7. (9) 

The Green function (1) is an integral over the 
imaginary part of p and consequently over r/o and 
AOo. Equation (1) then gives the Green function as 
an integral of the function Ph(rlO, SO, Sh) over all the 
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values of r/o: 
+ o o  

Gh(So, Sh) = exp [--iqb(So, Sh, B)] ~ Ph(r/o, So, Sh) dr/o 
- o o  

(10) 

with 
Ph( r/o, So, Sh) = ( i/4B)1/2(1/ 7r) exp [- i(So + Sh) r/0] 

x[  D_,_~( Y ) /  D_~( Yo)], 

Yo and Y being functions of r/o through (4), (4') and 
(5). Ph(r/o, SO, Sh) thus gives the behaviour, in the 
crystal, of an incident plane wave whose r /parameter  
is equal to r/o. 

3. Asymptotic form of the waves 

In order to interpret each wave Ph(r/o, So, Sh) we use 
here an asymptotic representation of the D_n_~(Y) 
functions obtained by the use of Olver's theorem 
(Slater, 1960) and valid for [ yE+4vl l /2~  1. Here n is 
an integer and u is complex. 

D_,,_~(Y) = {exp I - l o g  ( y2 + 4v)/4]} 

x [ C(n + v) exp [ - 0 , + , (  Y)] 

+ e[n + v, arg ( y2 + 4v)l /2]c-a(n + v) 

x (27r)l/2F-l(n + u) exp 0~+,( Y)] 
(11) 

where 

0,+v(Y) = (1/4) Y( y2 + 4u)1/2 + ( n + v -  1/2) 

x log {[ Y + ( y2 + 4v)1/2]/2 v 1/2} 

C ( n +  v ) = e x p [ u / 2 - ( 1 / 2 ) ( n +  v - 1 / 2 ) l o g  v] 

and the value of the e function depends on the value 
of the argument ,X' of ( Y2+4v)I / : ,  

( Y2+4u)1/2 = [ y2+4v l  I/2 exp ix 

and 

e(n+v,x) 
0 iflxl-< ~r/4 

= - e x p [ - i r r ( n + v ) ]  i fT r /4<X<57r /4  

I - e x p  [i-rr(n + v)] i f -  5 r r / 4 < X  < - rr/4. 

Consequently, Ph (r/o, So, Sh) strongly depends on the 
phases of Y and Yo or equivalently on the phases of 
r/o and r/ and, more simply, on their sign since we 
restrict ourselves to non-absorbing cases. 

In order to simplify the interpretation, let us assume 
a symmetric case and choose B positive (the case B 
negative would be treated in the same manner  and 
leads to identical results). 

If 9o and 9 are the respective phases of r/o and r/, 
Xo and X those of Yo and Y, then 

X o = 9 0 - r r / 4  and X = 9 - 1 r / 4 .  

Then if 77o (r/) is positive, )(o (X) is equal to - 7 r / 4  
and if r/o (r/) is negative, Xo (X) is equal to 37r/4. 

Let us write D - I - ~ ( Y ) =  C + D  where C and D 
are respectively the first and second terms in 
(11). The second term D which is proportional to 
e(1 + v, X) is then equal to zero if r/ is positive and 
is different from zero if 77 is negative. 

Similarly let us write: 

D_,( Yo) = F + G 

where G, proportional to e(v, Xo), equals zero if 71o 
is positive and is different from zero if r/o is negative. 

Now, the condition for (11) to be valid, which is 
I y2+4v[ 1/2 >> 1, can be satisfied in two different cases: 

(a) if ] v ] < l  (i.e. for large values of the strain 
gradient), the condition implies I Y] and then Ir/] >> 1; 

(b) if I/,[>>1 (i.e. for small values of the strain 
gradient) the condition is fulfilled without any restric- 
tion on lYI and then on 1,71. 

In case (a) (large strain gradients), G which is 
inversely proportional to F(1,) tends to zero and can 
be neglected. Then 

Ph ( r/0, SO, Sh ) = (Vl/2/~') exp [-/r/o(So + Sh ) ] 

x [ C / F +  D/F] .  (12) 

In case (b) (small strain gradients) it can be shown 
that G / F <  1 and then Ph(r/0, SO, Sh) can be expanded 
as a series: 

Ph(r/o, So, Sh) = (viii/77") exp [-/r/o(So + Sh)] 

x [ C / F +  D I F - C G / F  2 

- D G / F 2 + . . . ] .  (13) 

Then, in both cases, it is necessary to study the terms 
C~ F and D~ F. Their value is given in the Appendix. 

4. X-ray beams 

The Green function Gh(SO, Sh) gives the amplitude of 
the electric field D h at a point (So, Sh) due to a unit 
point source placed at the origin on the entrance 
surface. Gh(So, Sh) [equation (10)] is obtained 
through the integration of Ph ( r/o, So, Sh) which is itself 
a sum of terms [see (12) and (13) for large and small 
strain gradients respectively]. Then Gh(So, sh) is a 
sum of integrals. The first and second integrals can 
be written (neglecting for the moment the factor 
v'/2/~) 

I, = ~ exp [- /no(So+ Sh)][ C / F ]  dr/o 

= j" R1 exp (i91) dr/o (14) 

I2 = J" exp [-ir/o(So + Sh)][ D~ F] dr/o 

=j" R2 exp (i92) dr/o (15) 

where R~ and R2 are real, all the phases being 
included in 9, and 92. I1 and I2 can be integrated 
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using the stationary-phase method. The condition for 
the phase to be stationary gives the trajectory corre- 
sponding to an incident beam whose departure from 
the Bragg angle corresponds to r/o. Let us remind 
ourselves that I2 is zero if r/ is positive; q~, and q~2 
can be written 

~Ol=S(rl)--S(rlo)--rlo(So+Sh) (16) 

~,2=-S(n)-S(no)-no(So+Sh)  (17) 

where 

s ( n )  = {I nl(n 2_ 1) ' / 2 - log  [I nl + (n 2 -1) ' /2 ]} /4B 

(see Appendix). 
Then ,gS/art = [sign (n)(n 2-1)'/2]/2B where 

sign (7/) equals 1 if r />  0 and - 1 if r / <  0. 
The conditions for ~o, and ~02 to be stationary give 

the trajectories. These conditions depend on the sign 
of r/o and r/. 

Let us remark that, in the symmetric Bragg case, 
(8) and (9) give 

rt = rto+2BTrz/A = rlo+flz/tan 0 (18) 

and let us remember that B has been chosen positive. 
(a) If 7/0 is positive, then r/ is positive and the 

integral 12 is zero. The phase ~o, is stationary if 

2B(so+ Sh) = ( r /2 -  1)1/2--(7/2- 1) '/2 

o r  

flx=(rl2-1)W2-(rl2o-1)'/2 (19)  

using (2) and (So+Sh)=Trx/Ao in the symmetric 
Bragg case, where x is the coordinate along the 
entrance surface (Fig. 1). Equations (18) and (19) 
can be viewed as parametric equations of a hyperbola 
(Fig. 2) whose equation is 

[(flz/tan 0)+ ~To]2-[fix +(rl 2-  1)1/2] 2 =  1 

o r  

[fl(z + Zo)/tan O]2-[fl(x + Xo)] 2= 1 (20) 

where Zo = r/o tan O/fl and Xo = (r/Z- 1)'/2/fl. 

Let us recall that the origin of coordinates is the 
entrance point of the incident beam. Let us choose 
the point O'(z = -Zo, x = -Xo) as the origin for a new 
coordinate system: Z = z + Zo and X = x + Xo (Fig. 2). 
Then (20) for the hyperbola becomes 

(flZ/tan O)2-(flX)2= 1. (21) 

The coordinates of the origin O, for the path are 
now Z = Zo and X = Xo (since at the origin z = 0 and 
x = 0). Both are here positive (Figs. 2 and 3a). The 
path does not contain the apex of the hyperbola and 
as z increases tends more and more towards the 
asymptote. 

(b) If r/o is negative, then r /can  be either negative 
or positive depending on the value of z: 

(i) If z < - ( r / o  tan O)/fl, "q is negative; the condi- 
tion for q~, to be stationary is then 

X=[(712--1)l/E--(TI2--l)l/2]/fl. (22) 

The trajectory is again a part of hyperbola (20) [or 
equivalently (21)] where zo=r/otan O/fl and Xo = 
-(r /2 - 1)'/2/ft. They are both negative. The trajectory 
goes from the origin 02 towards the apex B of the 

m-X 

~o 
(a) 

\ %  < 0 

~ [ 0 2  , C 
,, 

iB 

(-%to0~ . . . . . . .  ~B' 

z 

(b) 

= x  

~ X  

z 

Fig. 2. Hyperbola giving the ray paths for a given value of the 
strain gradient/3. The origin of the path on the hyperbola depends 
on the value of the parameter 7/0 related to the departure from 
the Bragg angle of the incident beam. 

O 2 C 

\ 

~ X  

z 

(c) 

Fig. 3. Ray paths for different values of rio,/3 being chosen positive. 
(a) Case rio>0 (origin O l in Fig. 2). (b) Case rio<0 (origin 0 2 
in Fig. 2). The intensity of the new wave field B'C' is different 
from zero for large values of the strain gradient only. (c) Realistic 
path when the strain gradient is large enough to give rise to a 
new wave field. 
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hyperbola (Figs. 2 and 3b). Since n is negative, the 
integral I2 is not zero and the stationary condition 
for q~2 is 

x=[(n~- l ) ' /2+(n2-1) ' /2] l /3 ,  (23) 

which corresponds to the part BC of the hyperbola. 
These results could also be obtained using 
geometrical optics [see, for example, Gronkowski & 
Malgrange (1984)]. 

( i i)  I f  z > - ( n o  tan 0)//3 then n is positive and the 
second term Iz is zero. q~ is stationary if 

x=[(n2-1) ' /2+(n2-1) ' /2] / f l ,  (24) 

which gives the trajectory B'C' on the other branch 
of the hyperbola (Fig. 3b). 

This is a new result which was not given by 
geometrical-optics theory: there can exist a new wave 
field; since n has to change sign, the wave field jumps 
from one branch to the other. The amplitude of the 
wave contains a factor a(X, Xo) which depends on 
the phases of n and no (see the Appendix). If no and 
n are of the same sign as in case (i), a is only a phase 
factor whereas when no is negative and n positive, 
a = e xp (-7r] vl), which means that if I v[ is large (small 
strain gradient) the amplitude tends to zero. By con- 
trast if lul is small (strong strain gradient), then the 
amplitude of the new wave field can no longer be 
neglected. This demonstrates the creation of a new 
wave field when the strain gradient is large. Its 
intensity is a fraction exp( -27r lu  I) of the normal 
wave field. Since we have considered the non- 
absorbing case, = 1/4B=/3~//3 from (2) and (3). 
The curvature of the hyperbola close to its apex is 
very strong for high values of 1/31 and outside the 
neighbourhood of the apex of the hyperbola the paths 
are practically straight lines parallel to either So or Sh 
(Fig. 3c). 

The stationary-phase method has provided us with 
the energy path going through a given point (So, Sh) 
when a spherical wave is incident at the origin O. It 
has given the value of the parameter no of the associ- 
ated incident plane wave. This result can also be 
considered as giving the trajectory of a quasi-plane- 
wave beam with incidence A0o and parameter no. At 
a depth z, the local value of n is given by (18) and 
the trajectory is made of one branch of the hyperbola 
(20) [where Zo=r/otan 0//3 and Xo=sign(rt0)x 
( 7 2 - 1 )  1/2] for the normal wave field and of the other 
branch for the new wave field. The squared modulus 
of the amplitudes R~(no, 7) or Rz(n0, 7) gives the 
intensity of the reflected beam issued from the wave 
field. R~(no, 7) and R2(no, 7) both contain a factor 
u -~/2 which has not to be taken into account since it 
disappears when multiplied by the factor u ~/2 which 
appears in Ph(no, So, Sh), (12) and (13). It is 
worthwhile noticing that I C/FI 2 and [D/FI 2 both 
contain the factor (ng-1)'/2Elnol+(ng-1)'/2] -' 
which is (apart from a factor of 2) the fraction of the 

incident beam which goes into the crystal and could 
be deduced easily from boundary conditions at the 
entrance surface. The factors which depend on n 
could be deduced also from boundary conditions at 
a fictitious exit surface at the point under consider- 
ation. For the new wave field the factor I,~12= 
exp (-2rrl~,[) gives the fraction of the initial wave 
field which goes into the new wave field and the factor 
[A(v)I 2 in ]D/FI 2 shows that along BC (Fig. 3c) the 
intensity is decreased by a factor 1 - e x p  (2rrlv[) as 
required by the conservation of energy. 

Returning to the case of small strain gradients, we 
see that the form (13) of Ph(no, So, Sh) is valid what- 
ever Inol and 171 are and cannot be restricted to the 
two first terms. Let us consider the third and fourth 
terms respectively equal to - C G / F  2 and - D G / F  2 
(see Appendix) and leading to two integrals: 

13 = ~ exp [-/no(So + sh)][ -CG/F 2] dno 

= ~ R3 exp (iq~3) dno (25) 

I4 = ~ exp [-/no(S0 + Sh)][-DG/F z] dn0 

=J  R4 exp (hp4) dno. (26) 

These integrals are different from zero only if no is 
negative, since if no is positive G is equal to zero. 
The condition for q~3 to be stationary depends on the 
sign of n. If z < - (no  tan 0)//3, n is negative and this 
condition is: 

/ 3 x = 3 ( n ~ - l ) ' / 2 - ( n 2 - 1 )  '/2 (27) 

which can be written 

where 

~ ( x - x ~ ) = ( n g - 1 ) ' / 2 - ( n 2 - 1 )  ~/2 (28) 

xc= 2 ( n 2 - 1 ) ' / 2 / / 3 .  (29) 

x~ is the x coordinate of the intersection C of the 
hyperbolic trajectory OBC with the surface (Fig. 3b). 

Similarly the phase ~4 is stationary if 

/ 3 ( x - x c ) = ( n 2 o - 1 ) ' / : + ( n : - l )  ~/2. (30) 

Equations (28) and (30) are identical to (22) and (23) 
where x has been replaced by x - x c .  As the funda- 
mental equation (18) still holds, the trajectory is the 
same arc of a hyperbola as OBC but with its origin 
at C, giving the trajectory CB1 C, (Fig. 4). We obtain 
here, as expected, the reflexion of the beam at the 
surface. It can be shown easily that the other terms 
in the development (13) lead to successive reflexions 
at the surface. The case z > - ( n o t a n  0)//3 does not 
need to be considered here; it would lead to a new 
wave field created after B~ but its amplitude is non- 
negligible only if I~1 is small [because of A(u) in 
C/F]  and then G tends to zero so that the integrals 
are zero. This is not surprising: if lul is small, then 
the curvature of the hyperbola is strong. The beam 
arriving at C is quite parallel to Kh and is not reflected 
at the surface. All its energy goes out of the crystal. 
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5. Ampli tude of  the reflected wave at the surface 

Although the stationary phase is an integration 
method, we have used it, up to now, to determine ray 
paths. It will be used now to determine the amplitude 
of the reflected wave at the crystal surface for an 
incident spherical wave at the origin O. We need then 
the values of the integrals I , , /2 ,  13,--. [where we 
reintroduce the factor v'/2/~r dropped just before 
(14)] at the surface, that is at every point for which 
So = Sh and then fix = 4Bso. 

For I, the phase is not stationary at the surface 
since the corresponding ray paths go inside the crystal 
[ray paths of type O,r and 02B in Figs. 3(a) and (b) 
respectively] but I1 can be integrated exactly for 
points at the surface for which z -- 0 and then r /=  r/o. 
Its value derived from tables (e.g. Bateman, 1954) is 

Jl(2So)/(2So)=J,(~rx/Ao)/(~rx/Ao) (31) 

which is the value for the perfect crystal (J, is the 
Bessel function of order 1). 

The phases ~0 2 and q~3, in 12 and 13 respectively, 
are equal for r /=  7/0 and stationary for a value of 770 
given by 

(~?~)- l )'/2= flx/2 (32) 

which is identical to (29). 
Integration by the stationary-phase method then 

gives 

h = exp (-i¢r/4) 7r-l(Aofl ),/2 u1/2( 1 + u2) -1/4 

x f(f l )  exp [ -2 iS(u )  ] (33) 

where f ( f l )  = 1 for small values of the strain gradient 
and f ( f l )=[1 -exp ( -21r l f l c / f l [ ) ]  '/2 for large values 
of the strain gradient, and 

h = - - [U  "~" (1  -[- U2)1/2]-212 ( 3 4 )  

with 

S( u ) = (fl~/fl ){ u( 1 + u 2 ) ,/2 _ log [ u + ( 1 + u 2) ,/2]} 

and u = 3x/2.  The corresponding stationary paths are 
BC and CJ (Fig. 5). 

For small or intermediate values of the strain 
gradient the following terms /4 and /5 have to be 
considered. They correspond to stationary paths GC 
and CH and a stationary value r/~ such that 

( ~ 2  1) ' /2--flx/4. (35) 

One obtains 

I4 = exp (-3i7r/4) 7r-'(Aofl/2)'/2( u')'/2( 1 + u'2) -'/4 

x [ u ' +  (1 + u'2)1/2] - '  exp[-4 iS(u ' ) ]  (36) 

I5 = - [  u'+ (1 + u'2)1/2]-214 (37) 

where u ' =  fix~4. 
The following terms in expansion (13) would give 

stationary paths in C corresponding to 3,4, 5 , . . .  
successive reflexions at the surface. The correspond- 
ing intensities decrease as the number of reflexions 
increases. 

6. Concluding  remarks 

We have here demonstrated the creation of a new 
wave field in the Bragg case for highly distorted 
crystals. This has been done starting from the Green 
function given by Chukhovskii, Gabrielyan & 
Petrashen' (1978) and using a new asymptotic form 
for the cylindric functions D_,_v(Y) .  This new 
development can describe both cases: strong and 
slight distortions of the crystal. The principle is then 
the same as that used by Balibar, Chukhovskii & 
Malgrange (1983). The Green function is written as 
an integral over the angles of incidence. The integrand 
can then be considered as the wave in the crystal 
resulting from a given incident plane wave. The 
integrand is a sum of terms and ray paths are obtained 
from the condition that the phase of each term be 
stationary. Successive reflexions on the surface are 
obtained in the case of small strain gradients and the 
main result for high strain gradients is the creation 
of a new wave field close to the apex of the hyperbola. 
This new wave field takes a fraction exp (-27r/laol) 
out of the normal wave field where ao is the strain 
gradient expressed in a unit equal to tic= ¢r/2Ao 
where Ao is the intrinsic extinction distance (equal 
to the inverse of the distance of the apices of the 
dispersion hyperbola). This is exactly the same result 
as the one found theoretically in the Laue case 
(Balibar, Chukhovskii & Malgrange, 1983) and 
shown in the Bragg case by computer experiments by 
Gronkowski & Malgrange (1984). 

APPENDIX 

Let us write 
po= r/~- 1 P = n 2 - 1  

Qo=lTio[q-(~12-l) 1/2 Q=171[+(~72-1) '/2 

s(~7) = (1 /4B){ I  ~/[(~/2 _ 1 ),/2 _ log [[ ~7l + (7/2 - 1)1/2]}. 

C C1 

B BI 

Fig. 4. Beam trajectory showing the reflexion at the crystal surface. 

""•0 F C 

B J 

Fig. 5. Stationary paths at a point C on the surface when the 
incident wave is spherical. 
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T h e n  

C~ F= ~,-~/2(po/p)~/4( QoQ)-~/2 

x ~(Xo, x)  exp { i[ s ( n )  - S(no)]} 
where 

exp (i7r/2) if no > 0 and n > 0 

a(Xo, X)=lexp(-i~r/2) if n o < 0  and n < 0  
[ e x p  (-Tr[u[) if n o < 0  and n > 0  

D~ F= A( u)( Pol p) , /4(Q/Qo)l /2  

x exp { i [ - S ( n ) -  S(no)]} 
where 

v-l/2 if]ul--> oo 

A ( v ) =  [ul -~/2[1-exp (2i~r~')]~/2 
= exp (i lr /4)  u-~/2[ 1 - exp ( - 2  rr[ u I) ]1/2 

i f l u l ~ O  

-CG / F 2= - u-~/2( po/ P )'/4 Qoa/2 Q-'/2 

x exp { i[ S(7/) - 3S(no) ]} 

-DG/F2= z, -1/2 exp (-i-rr/2) 

x ( P o / P ) ' / 4 Q ' / 2 Q 0 3 / 2  

x exp { i [ -S (n ) -  3S(no)]}. 
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